Minimal Degree Coprime Factorization of Rational Matrices
نویسندگان
چکیده
منابع مشابه
Minimal Degree Coprime Factorization of Rational Matrices
Given a rational matrix G with complex coefficients and a domain Γ in the closed complex plane, both arbitrary, we develop a complete theory of coprime factorizations of G over Γ, with denominators of McMillan degree as small as possible. The main tool is a general pole displacement theorem which gives conditions for an invertible rational matrix to dislocate by multiplication a part of the pol...
متن کاملComputation of Coprime Factorizations of Rational Matrices
We propose a numerically reliable state space algorithm for computing coprime factorizations of rational matrices with factors having poles in a given stability domain. The new algorithm is based on a recursive generalized Schur technique for poles dislocation by means of proportional-derivative state feedback. The proposed algorithm is generally applicable regardless the underlying descriptor ...
متن کاملComputation of Normalized Coprime Factorizations of Rational Matrices
We propose a new computational approach based on descriptor state space algorithms for computing normalized coprime factorizations of arbitrary rational matrices. The proposed approach applies to both continuousand discrete-time rational transfer-function matrices and shows that each rational matrix possesses a normalized coprime factorization with proper factors. The new method is conceptually...
متن کاملGeneralized Schur Methods to Compute Coprime Factorizations of Rational Matrices
Numerically reliable state space algorithms are proposed for computing the following stable coprime factorizations of rational matrices factorizations with least order denominators factorizations with inner denominators and factorizations with proper stable factors The new algorithms are based on a recursive generalized Schur algorithm for pole assignment They are generally applicable regardles...
متن کاملSmooth Stabilization Implies Coprime Factorization
Absfract-This paper shows that coprime right factorizations exist for the input-to-state mapping of a continuous-time nonlinear system provided that the smooth feedback stabilization problem is solvable for this system. In particular, it follows that feedback linearizable systems admit such factorizations. In order to establish the result, a Lyapunovtheoretic definition is proposed for bounded ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications
سال: 1999
ISSN: 0895-4798,1095-7162
DOI: 10.1137/s0895479898339979